Pearson Edexcel

Mark Scheme
(Results)

November 2021

Pearson Edexcel GCSE
In Physics (1PH0) Paper 1F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at:www.pearson.com/uk

November 2021
Publications Code 1PHO_1F_2111_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Mark schemes have been developed so that the rubrics of each mark scheme reflects the characteristics of the skills within the AO being targeted and the requirements of the command word. So for example the command word 'Explain' requires an identification of a point and then reasoning/justification of the point.
Explain questions can be asked across all AOs. The distinction comes whether the identification is via a judgment made to reach a conclusion, or, making a point through application of knowledge to reason/justify the point made through application of understanding. It is the combination and linkage of the marking points that is needed to gain full marks.
When marking questions with a 'describe' or 'explain' command word, the detailed marking guidance below should be consulted to ensure consistency of marking.

Assessment Objective		Command Word	
Strand	Element	Describe	Explain
AO1*	An answer that combines the marking points to provide a logical description	An explanation that links identification of a point with reasoning/justification(s) as required	
AO2	An answer that combines the marking points to provide a logical description, showing application of knowledge and understanding	An explanation that links identification of a point (by applying knowledge) with reasoning/justification (application of understanding)	
AO3	1 a and $1 b$	An answer that combines points of interpretation/evaluation to provide a logical description	
AO3	2a and $2 b$		An explanation that combines identification via a judgment to reach a conclusion via justification/reasoning
AO3	3a	An answer that combines the marking points to provide a logical description of the plan/method/experiment	
AO3	$3 b$		An explanation that combines identifying an improvement of the experimental procedure with a linked justification/reasoning

[^0]| Question
 number | Answer | Mark |
| :--- | :--- | :--- |
| $\mathbf{1 (a)}$ | C Mercury | (1)
 AO1 |
| | A is incorrect Jupiter is the fifth planet from the Sun
 B is incorrect Mars is the fourth planet from the Sun
 D is incorrect Venus is the second planet from the Sun | |

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (b)}$	D a natural satellite		(1) AO1
	A is incorrect, the Moon is not an asteroid B is incorrect, the Moon is not a comet C is incorrect, the Moon is not a nebula		

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (c)}$	Any two of the following		(2)
	1. mass (1) 2. radius (1)	allow made of different substance/ material if no other mark awarded, allow 1 mark for (Moon is) smaller or Earth is bigger	

Question number	Answer	Additional guidance	Mark
$\mathbf{1 (d)}$	substitution (1) $(\mathrm{W}=) 6.0 \times 1.6$	(3) AO2(2) award full marks for correct answer without working.	AO1(1)
	9.6	unit (independent mark)(1)	accept N, n and/or Newton
newton	$9.6 \mathrm{~N} / \mathrm{n}$ gains full marks		

Question number	Answer	Additional guidance	Mark
2a(i)	C		(1)
	ultraviolet infrared ${ }^{\text {r }}$ radio		AO1
	A is incorrect infrared should be in K, radio should be in L and ultraviolet in J, B is incorrect radio should be in L and ultraviolet should be in K D is incorrect radio should be in L and infrared in K		

Question number	Answer	Additional guidance	Mark
2a (ii)	C speed		(1) amplitude, frequency and wavelength are not the same for all EM waves

Question number	Answer	Additional guidance	Mark
2(b) (i)	One from: seeing (broken) bones (1) radiotherapy (1) detecting cracks in metals (1) airport security (1) observing the internal structure of objects(1)	seeing inside the body	AO1

Question number	Answer	Additional guidance	Mark
2(b) (ii)	One from: can cause cancer (1) can cause burns(1) \{damage/kills/harms\} cells/tissue (1) mutates DNA/cells (1)	harms organ(s) / foetus allow (highly) ionising	(1) AO1

Question number	Answer	Additional guidance	Mark
2(c)	infrared (1)	must be in first sentence space	AO2
must be in second			
sentence space			
thermal (1)	award 2 marks for answers in this order		

Total marks for question $\mathbf{2 = 6}$ marks

Question number	Answer	Additional guidance	Mark
3a	A two		(1) AO1
	B is not correct as a uranium nucleus does not split to give 3 daughter nuclei C is not correct as a uranium nucleus does not split to give 4 daughter nuclei D is not correct as a uranium nucleus does not split to give 5 daughter nuclei		

Question number	Answer	Additional guidance	Mark
3bi	A description including: EITHER neutrons are absorbed by uranium nuclei/atoms (1) more neutrons are produced/emitted (which are absorbed by uranium nuclei) OR diagram (no labels needed) two nuclei/atoms splitting (1) four or more nuclei/atoms splitting (1)	ignore any reference to bonds accept hit /collide with accept a controlled chain reaction diagram for 2 marks	$\begin{aligned} & \text { (2) } \\ & \text { AO1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
3bii	An explanation linking: (because the moderator/it) slows down/increases the chance of absorption of(1) neutrons (1)	(2) AO1	

Question number	Answer	Additional guidance	Mark
3biii	substitution(1) $2\left(.0 \times 10^{(17)}\right) \times 4\left(.0 \times 10^{(-11)}\right)$ evaluation (1) $8(.0) \times 10^{6}(\mathrm{~J})$	(2) AO2	
		accept 8000000(J) accept 8MJ 8 to any other power of ten scores 1 mark award full marks for correct answer without working.	

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \text { 3c } & \text { A description including } & & \begin{array}{l}\text { (2) } \\ \text { AO1 }\end{array} \\ & \begin{array}{ll}\text { hydrogen nuclei/atoms join (1) } \\ \text { helium is produced (1) } \\ \text { one from } \\ \text { lost (total) mass (1) } \\ \text { mass is converted to energy (1) }\end{array} & \begin{array}{l}\text { larger/heavier nucleus } \\ \text { produced }\end{array} & \text { energy is released }\end{array}\right]$

Question number	Answer	Additional guidance	Mark
4 (a)(i)	substitution (1) $(\Delta G P E=) 64 \times 10 \times 24$ evaluation (1) $15000(\mathrm{~J})$	(2) AO2	
		accept $15360(\mathrm{~J})$ or $15400(\mathrm{~J})$ award full marks for correct answer without working.	

Question number	Answer	Additional guidance	Mark
4 (a)(ii)	substitution (1) $(\mathrm{KE}=) 1 / 2 \times 64 \times 6^{(2)}$ calculation of $6^{2}(1)$ evaluation (1) $1200(\mathrm{~J})$	(3) AO2	
		accept 1152(J) award full marks for correct answer without working.	$192(\mathrm{~J})$ scores 2 marks

Question number	Answer	Additional guidance	Mark
4(a)(iii)	an explanation linking any two from: the kinetic energy (store)/it decreases (to zero) (1) (the energy) has dissipated (1)	(2) AO2 transferred to ground/brake(s) tods	make the brakes hot
	thermal energy (store) increases (1)		

Question number	Answer	Additional guidance	Mark
4(b)(i)	$5000(\mathrm{~J})$	$24000-19000$	(1) AO2

Question number	Answer	Additional guidance	Mark
4 (b)(ii)	substitution (1) (efficiency = $\frac{19000(x 100 \%)}{24000}$	(2) AO2	
evaluation(1)	allow 0.8 do not award 79 without percentage	award full marks for correct answer without working.	

Total marks for Question $4=10$

5(a)(i)	D travelling more slowly A is incorrect, more passengers would increase the stopping distance		
B is incorrect, worn tyres would			
increase the stopping			
distance		\quad	(1)
:---			
AO1			
Cis incorrect, if the car needed			
new brakes this would			
increase the stopping			
distance	\quad	(
:---			

Question number	Answer	Additional guidance	Mark
$\mathbf{5 ~ (a) (i i) ~}$	identification of horizontal line as reaction time (1)		(2) AO3
evaluation (1) 0.6 (s)	award full marks for correct answer without working	0.7 scores 1 mark	

Question number	Answer	Additional guidance	Mark
$\mathbf{5 b}$	A description including two from let the car roll down the slope from the same point on the slope (1) measure distance it travels (along horizontal surface) (1)	see how far it travels allow time it takes to stop	AO1 change the surface/ use different surfaces (1)

Question number	Answer	Additional guidance	Mark
5(c)(i)	0.52		(1) AO3

Question number	Answer	Additional guidance	Mark
$\mathbf{5 (c) (i i)}$	addition and division (1)		(2)
	AO2 evaluation (1) $0.35(\mathrm{~m})$	accept $0.345(\mathrm{~m})$ award full marks for correct answer without working.	accept acci.38 for 2 marks (five results included in average

Question number	Answer	Additional guidance	Mark
$\mathbf{5 c (i i i)}$	Any one from	accept 'higher slope/high slope	AO1
	make the slope steeper(1)	push/pull the trolley (1)	accept means of reducing friction e.g. use lubricant

Question number	Answer	Additional guidance	Mark
5(d)	substitution (1) $(a=) \frac{12-2(.0)}{4(.0)}$	(2) evaluation (1) $2.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	award full marks for correct answer without working.

Question number	Answer	Additional guidance	Mark
$\mathbf{6}$ (a)	B force		AO1
	A is incorrect, mass is a scalar quantity C is incorrect, energy is a scalar quantity D is incorrect, distance is a scalar quantity	(1)	

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (b) (i)}$	A plan including four of the following measurement of appropriate distance (1) measurement of appropriate time (1) use of speed = distance (1)	(4) AO3	
detail (1) e.g. repeat and average, use ruler/stop clock, mark a line near the top and bottom of liquid			

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { number }\end{array} & \text { Answer } & \text { Additional guidance } & \text { Mark } \\ \hline \mathbf{6 (b) (i i)} & \begin{array}{l}\text { An explanation linking two } \\ \text { from: } \\ \text { add more lines (at equal } \\ \text { distances)(1) }\end{array} & \begin{array}{l}\text { (2) } \\ \text { use longer test tube / } \\ \text { use different heights } \\ \text { of liquid / use } \\ \text { different sections of } \\ \text { the liquid }\end{array} & \text { AO3 }\end{array}\right\}$

Question number	Answer	Additional guidance	Mark
$\mathbf{6 (c)}$	substitution (1)		(2)
	$\left(v^{2}-0=\right) 2 \times 10 \times 1.5$	accept numbers that evaluation (1) round to 5.5 e.g.	
	$5.5(\mathrm{~m} / \mathrm{s})$	5.477 	$30(\mathrm{~m} / \mathrm{s})$ gains 1 mark for correct substitution but no square root taken
		award full marks for correct answer without working.	

Total marks for question $6=9$

Question number	Answer	Mark
$\mathbf{7 (a)}$	A black	(1)
	B is incorrect as no blue light shines on the object	
	C is incorrect as no green light shines on the object	
	D is incorrect as no red light is reflected from the object	

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (b) (i)}$	C specular reflection A is incorrect as the reflection is not diffuse	(1) AO1 is incorrect as it is not refraction	is incorrect as it is not refraction

Question number	Answer	Additional guidance	Mark
$\mathbf{7 (b) (\text { ii) }}$	An explanation linking: (the surface/metal ball) is smooth/shiny (1) (for each ray of light) the angle of incidence is equal to the angle of reflection (1)	(2) the reflection is even / there is no scattering	
full marks can be a mirror			
awarded for labelled			
diagrams			

\hline\end{array}\right.\)

Question number	Answer	Additional guidance	Mark
$\mathbf{7 ~ c (i)}$	similarity (both) change direction /bend/refract (rays of light) (1)	OR (rays of light/they) pass/go (straight) through the (optical) centre / focus(1) difference one converges the other diverges (1)	accept ray through centre described as 'bottom ray'

Question number	Answer	Additional guidance	Mark
$\mathbf{7 c (i i)}$	(the power of) P is less than (the power of) Q	ORA allow Q is greater /bigger	(1) AO2

Question number	I ndicative content	Mark
7d*	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant. Refraction - Angle of incidence marked - Angle of refraction marked - Angles are measured from the normal - Angle of refraction is bigger than the angle of incidence - Rays of light travel in straight lines - Refraction occurs at a boundary between two materials of different (optical) density - The angle of incidence is less than the angle of refraction when light passes into a less dense medium (glass into air) - Refraction is a change in direction of a light ray. - Refracted rays bend away from the normal when light passes into a less dense medium (glass into air) - The ray in the more dense medium (glass) travels more slowly ORA Total I nternal Reflection - Possible critical angle marked - Light stays inside the glass - Only occurs when the incident light is in the more dense medium - Only occurs when the incident angle is equal to greater than the critical angle - Critical angle for glass is about 42° - Angle of incidence is equal to the angle of reflection	(6) AO1

Level	Mark	Descriptor		
Level 1	0	$1-2$		
No rewardable material.				
Level 2	$3-4$	Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1) Presents a description which is not logically ordered and with significant gaps. (AO1)		
Level 3	$5-6$	Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)		Demonstrates accurate and relevant physics understanding
:---				
throughout. Understanding of the scientific ideas, enquiry,				
techniques and procedures is detailed and fully developed.				
(AO1)				
Presents a description that has a well-developed structure				
which is clear, coherent and logical. (AO1)				

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
Level 1	1 1-2	Additional guidance isolated fact(s) about refraction or total internal reflection(TIR)	Possible candidate responses naming of any rays of light or any angles in text or on diagrams light changes direction/bends TIR ray stays inside the glass / does not go into air refracted ray goes through glass and air
Level 2	3-4	Additional guidance simple description of refraction and TIR or facts about one and more detail of the other	Possible candidate responses Angle or ray identified For refraction light changes direction from glass into air or TIR angles are equal inside the glass
Level 3	$5-6$	$\underline{$ Additional guidance detailed description refraction and TIR $}$of	Possible candidate responses For refraction light changes direction from glass into air AND TIR angles are equal inside the glass

Total marks for question $7=13$

Question number	Answer	Additional guidance	Mark
8(a)	uses data taken from x axis (1)		(2) AO3
	28(cm)(1)	award full marks for correct answer without working	

Question number	Answer	Additional guidance	Mark
$8 \mathrm{~b}(\mathrm{i})$	```a description to include count the number of waves(1) (arriving/passing a point) in a specific time(1) use frequency = number of waves time (1)```	ignore in one second count the number of waves in one second scores 2 marks (MP1 and MP3) find the time between one wave and the next scores 2 marks (MP1 and MP2)	$\begin{aligned} & \text { (3) } \\ & \text { AO1 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
8 b (ii)	substitution (1) $1.5=0.7 \times \lambda$ rearrangement and evaluation 2.1(4) m	$\frac{1.5}{0.7}$ allow $\frac{0.7}{1.5}$ for 1 mark award full marks for correct answer without working. $\lambda=\mathrm{v} / \mathrm{f}$ scores 1 mark	$\begin{aligned} & \hline \text { (2) } \\ & \text { AO2 } \end{aligned}$

Question number	Answer	Additional guidance	Mark
$\mathbf{8 ~ b (i i i) ~}$	A description to include: mention of oscillations/vibrations (1)	up and down OR side to side (movements) OR back and forth	AO1 EITHER transverse - (oscillations) perpendicular to direction of wave (travel) (1) OR longitudinal - (oscillations) in same direction as wave (travel) (1)

Question number	Answer	Additional guidance	Mark
$\mathbf{8 (c)}$	substitution $(x)=330 \times 4.0$ evaluation $1300(\mathrm{~m})$	(2) AO2	

Question number	Answer	Mark
$\mathbf{9 (a)}$	B ionising and emitted by unstable nuclei	(1) AO1
	A is incorrect stable nuclei do not give radioactive emissions C is incorrect not all radioactive emissions are neutral D is incorrect not all radioactive emissions are neutral	

Question number	Answer	Additional guidance	Mark
$\mathbf{9 (b)}$	same number of protons (1)	same atomic number	AO2
	different number of neutrons (1)	different mass number	

Question number	Answer	Additional guidance	Mark
9(c)(i)	An explanation to include;	(2) there is no aluminium to absorb β particles (1)	aluminium absorbs/stops/blocks beta particles
	(therefore) more β particles reach the G-M tube (1)	accept reverse arguments accept radiation for beta particles	

Question number	Answer	Additional guidance	Mark
$\mathbf{9}$ c (ii)	(idea of) background radiation	a named source of background radiation	(1) AO3

Question number	Answer	Additional guidance	Mark
9c (iii)	becquerel	accept Bq accept close spelling	(1) AO1

\square

Question number	I ndicative content	Mark
$\mathbf{9 d *}$	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	(6) AO1
	Dangers of exposing people to radioactive sources/ radiation. - it is ionising - may cause cancer - may destroy /kill cells - can mutate DNA - can burn the skin	Protection of hospital staff using radioactive sources/ radiation. - use tongs to carry radioactive sources - use lead containers to store sources - stay at a distance from radioactive sources - use sources for as short a time as possible - wear (lead lined) protective clothing (PPE) - give treatments from behind a shield /wall wear a radiation badge (dosimeter)

Level	Mark	Descriptor
Level 1	0	$1-2$
No rewardable material.		
Level 2	$3-4$	Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1) Presents a description which is not logically ordered and with significant gaps. (AO1)
Level 3	$5-6$	Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)

| | Presents a description that has a well-developed structure
 which is clear, coherent and logical. (AO1) |
| :--- | :--- | :--- |

Level	Mark	Additional Guidance	General additional guidance - the decision within levels e.g. - At each level, as well as content, the scientific coherency of what is stated will help place the answer at the top, or the bottom, of that level.
	0	No rewardable material.	
Level 1	1-2	Additional guidance At least one isolated fact about the dangers of radiation and/or protection from radiation	Possible candidate responses it's ionising causes cancer burns you kills cells mutates DNA wear a radiation badge use tongs work from behind a shield use protective clothing
Level 2	3-4	Additional guidance simple explanation of the dangers of radiation and a fact about protection or reverse OR detailed explanation of the dangers of radiation or protection from radiation	Possible candidate responses radiation is ionising and can kill cells so wear a radiation badge or use tongs and stay at a distance from radiation source as it can cause cancer or use tongs to stay at a distance from radiation sources and wear a radiation badge
Level 3	5-6	Additional guidance detailed explanation of the dangers of radiation and protection from radiation	Possible candidate responses radiation is ionising and can kill cells and use tongs and stay at a distance from the radiation source

Question number	Answer	Mark
$\mathbf{1 0}$ (a)	The only correct answer is D the discovery of cosmic microwave background (CMB) radiation	(1) AO1 A is not correct because it does not indicate the Universe had a beginning B is not correct, it is evidence against the geocentric model of the Universe \mathbf{C} is not correct, it is evidence for other solar systems

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0 (b)}$	A description to include:		(2) AO1
	wavelength (of the light) (1) appears to increase (1) (increase must be linked with wavelength]	Red shift/Doppler effect (Red shift) shows galaxy moving away	accept answers in terms of frequency

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0}$ (c)	similarity (both have) expanding Universe (1)	(2) AO1 difference one from: Steady State, Universe has no beginning (1) Steady State theory requires the continual formation of new matter, the Big Bang theory does not (1)	different interpretation of CMBR
Question number	Answer	Additional guidance	Mark

| $\mathbf{1 0}$ (d)(i) | $1050 \pm 20(\mathrm{~km} / \mathrm{s})$ | (1)
 AO3
 marked
 with dii |
| :--- | :--- | :--- | :--- |

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0}$ (d)(ii)	attempt at $\Delta y(1)$ Δx	could be seen on graph	(3) AO3
	70 ± 5	evaluation (1) award 2 marks for correct answer without working	independent mark inds Mpc

Question number	Answer	Additional guidance	Mark
$\mathbf{1 0}$ (d)(iii)	an explanation linking:	(2) points are scattered widely about the line (on graph) (1) giving wide range of possible gradients (1)	there are many possible best fit lines

[^0]: *there will be situations where an AO1 question will include elements of recall of knowledge directly from the specification (up to a maximum of 15%). These will be identified by an asterisk in the mark scheme.

